This paper focuses on the impact of proper thermal integration between two major components of the indirect methanol fuel cell vehicle fuel processor (reformer and burner). The fuel processor uses the steam reformation of methanol to produce the hydrogen required by the fuel cell. Since the steam reformation is an endothermic process, the required thermal energy is supplied by a catalytic burner. The performance of the fuel processor is very strongly influenced by the extent of thermal integration between the reformer and burner. Both components are modeled as a set of CSTRs (Continuous Stirred Tank Reactors) using Matlab/Simulink. The current model assumes no time lag between the methanol sent into the reformer and the methanol sent into the burner to generate the necessary heat for the reformer reactions to occur. However, a time lag between these flows can affect the temperature distribution of the thermally integrated components, possibly jeopardizing reformer catalyst integrity, decreasing methanol conversion and increasing carbon monoxide production. Preliminary results for a lag to a step response are discussed, and there appears to be minimal effect on this limited set of parameters.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Steam Reformer/Burner Integration and Analysis for an Indirect Methanol Fuel Cell Vehicle Fuel Processor


    Weitere Titelangaben:

    Sae Technical Papers


    Beteiligte:

    Kongress:

    SAE 2001 World Congress ; 2001



    Erscheinungsdatum :

    05.03.2001




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Print


    Sprache :

    Englisch




    Steam reformer/burner integration and analysis for an indirect methanol fuel cell vehicle fuel processor

    Sunderasan,M. / Ramaswamy,S. / Moore,R.M. et al. | Kraftfahrwesen | 2001


    Steam reformer/burner integration and analysis for an indirect methanol fuel cell vehicle

    Sundaresan, Meena / Ramaswamy, Sitaram / Moore, Robert | AIAA | 2000


    2001-01-0539 Steam Reformer/Burner Integration and Analysis for an Indirect Methanol Fuel Cell Vehicle Fuel Processor

    Sundaresan, M. / Ramaswamy, S. / Moore, R. M. et al. | British Library Conference Proceedings | 2001


    Catalytic burner for an indirect methanol fuel cell vehicle fuel processor

    Sundaresan, M. / Ramaswamy, S. / Moore, R.M. et al. | Tema Archiv | 2003