This paper describes the development of a novel data model for storing and sharing data obtained from engine experiments, it then outlines a methodology for automatic model development and applies it to a state-of-the-art engine combustion model (including chemical kinetics) to reduce corresponding model parameter uncertainties with respect engine experiments. These challenges are met by adopting the latest developments in the semantic web to create a shared data model resource for the IC engine development community. The relevant data can be extracted and then used to set-up simulations for parameter estimation by passing it to the relevant application models. A methodology for incorporating experimental and model uncertainties into the model optimization procedure is presented.Data from seven operating points have been extracted from the proposed data model and have been incorporated into a state-of-the-art in-cylinder IC engine model through the optimization of model parameters whilst accounting for the model parameter and experimental uncertainties.
Automated IC Engine Model Development with Uncertainty Propagation
Sae Technical Papers
SAE 2011 World Congress & Exhibition ; 2011
12.04.2011
Aufsatz (Konferenz)
Englisch
Automated internal combustion engine model development with uncertainty propagation
Kraftfahrwesen | 2011
|2011-01-0237 Automated IC Engine Model Development with Uncertainty Propagation
British Library Conference Proceedings | 2011
|Uncertainty Propagation in Model-Based Recognition
British Library Online Contents | 1998
|Automated Model Fit Method for Diesel Engine Control Development
SAE Technical Papers | 2014
|Automated Model Fit Method for Diesel Engine Control Development
British Library Conference Proceedings | 2014
|