The dynamic model parameter identification is important for unmanned aerial vehicle modeling and control. The unmanned aerial vehicle model parameters are usually identified through wind tunnel experiments, which are complex. In this paper, a model parameter identification method is proposed using the flight data for quadrotors. The parameters of the thrust, drag force, torque, rolling moment and pitching moment are estimated through Kalman filter. Global positioning system and inertial sensors are used as measurements. The observabilities of the model parameters and their degrees of observability are analyzed. Flight experiments are carried out to verify the proposed method. It is shown that the model parameters estimated by the proposed method have good accuracies, demonstrating the validity of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A dynamic model parameter identification method for quadrotors using flight data


    Beteiligte:
    Lyu, Pin (Autor:in) / Bao, Sheng (Autor:in) / Lai, Jizhou (Autor:in) / Liu, Shichao (Autor:in) / Chen, Zang (Autor:in)


    Erscheinungsdatum :

    01.05.2019


    Format / Umfang :

    13 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Simulation of formation flight with four Quadrotors

    Kannan, Elumalai / Ayyakannu, Kaviyarasu | American Institute of Physics | 2023


    Flight-Trim System for Quadrotors with Rotatable Arms

    Xiong, Hao / Hu, Jin / Diao, Xiumin | AIAA | 2020


    State Space Predictive Control for Quadrotors Cooperative Flight

    Ji, Wenlong / Li, Shujing / Shang, Yaobo et al. | IEEE | 2023


    Quadrotors data fusion using a particle filter

    Mercado, D. A. / Castillo, P. / Lozano, R. | IEEE | 2014