Predicting future trajectories is crucial for autonomous vehicles, as accurate predictions enhance safety and inform subsequent decision-making and planning modules. This is however a challenging task due to the complex interactions between surrounding vehicles. Existing methods struggled to extract deep representations and often overlook spatial dependence. To address this problem, this paper introduces GIVA, an interaction-aware trajectory prediction method based on the Gated Recurrent Unit (GRU)-Improved Visual Geometry Group (VGG)-Attention Mechanism model. GIVA first encodes the historical trajectories of the target vehicle and its surrounding vehicles using a GRU Encoder. Next, an Interaction Module, which combines the Improved VGG Pooling Module and the Attention Mechanism Pooling Module, effectively captures spatial interaction features between vehicles. The Improved VGG Pooling Module extracts more detailed and effective interaction information, while the Attention Mechanism Pooling Module emphasizes the importance of surrounding vehicles for the target vehicle’s future trajectory. Lastly, the dynamic encoding feature of the target vehicle and the fused interaction feature are concatenated and input into a GRU Decoder to generate the future trajectory. Experiments on the public Next Generation Simulation (NGSIM) dataset showcase the effectiveness of GIVA compared to existing prediction approaches, demonstrating its potential for improving autonomous vehicle performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    GIVA: Interaction-aware trajectory prediction based on GRU-Improved VGG-Attention Mechanism model for autonomous vehicles


    Beteiligte:
    Meng, Zhiwei (Autor:in) / He, Rui (Autor:in) / Wu, Jiaming (Autor:in) / Zhang, Sumin (Autor:in) / Bai, Ri (Autor:in) / Zhi, Yongshuai (Autor:in)


    Erscheinungsdatum :

    01.01.2025




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    TRAJECTORY PREDICTION FOR AUTONOMOUS VEHICLES USING ATTENTION MECHANISM

    PRONOVOST ETHAN MILLER | Europäisches Patentamt | 2024

    Freier Zugriff

    TRAJECTORY PREDICTION FOR AUTONOMOUS VEHICLES USING ATTENTION MECHANISM

    PRONOVOST ETHAN | Europäisches Patentamt | 2024

    Freier Zugriff

    AI-TP: Attention-Based Interaction-Aware Trajectory Prediction for Autonomous Driving

    Zhang, Kunpeng / Zhao, Liang / Dong, Chengxiang et al. | IEEE | 2023



    Interaction-Aware Trajectory Prediction for Autonomous Vehicle Based on LSTM-MLP Model

    Meng, Zhiwei / Wu, Jiaming / Zhang, Sumin et al. | Springer Verlag | 2023