To avoid the potential risk triggered by the failure of the conflict arbitration of autonomous vehicles, a driving intention prediction method based on the Long Short-Term Memory (LSTM) neural network involving Temporal Pattern Attention (TPA) is proposed. To be more specific, the TPA is embedded into the LSTM network to improve predictive accuracy. Furthermore, for evaluating the risk of the candidate trajectory, a risk assessment based on the velocity obstacle method which considers influence factors such as time to collision and collision energy loss is proposed. Finally, the proposed trajectory prediction algorithm is verified with the Next Generation Simulation data set and actual vehicle experiment. The results demonstrate the effectiveness of the proposed Method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Driving intention prediction algorithm based on TPA-LSTM for autonomous vehicles


    Beteiligte:
    Wu, Yanhong (Autor:in) / Gao, Jianbo (Autor:in) / Wu, Huateng (Autor:in) / Wei, Hanbing (Autor:in)


    Erscheinungsdatum :

    01.12.2024




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Driver intention-based lane assistant system for autonomous driving vehicles

    ZHU FAN / KONG QI | Europäisches Patentamt | 2020

    Freier Zugriff

    INTENTION-DRIVEN TRAJECTORY PREDICTION FOR AUTONOMOUS DRIVING

    Fan, Shiwei / Li, Xiangxu / Li, Fei | British Library Conference Proceedings | 2021


    Intention-Driven Trajectory Prediction for Autonomous Driving

    Fan, Shiwei / Li, Xiangxu / Li, Fei | IEEE | 2021


    DRIVER INTENTION-BASED LANE ASSISTANT SYSTEM FOR AUTONOMOUS DRIVING VEHICLES

    ZHU FAN / KONG QI | Europäisches Patentamt | 2019

    Freier Zugriff