This article aims to present an adaptive and robust cooperative visual localization solution based on stereo vision systems. With the proposed solution, a group of unmanned vehicles, either aerial or ground will be able to construct a large reliable map and localize themselves precisely in this map without any user intervention. For this cooperative localization and mapping problem, a robust nonlinear H∞ filter is adapted to ensure robust pose estimation. In addition, a robust approach for feature extraction and matching based on an adaptive scale invariant feature transform stereo constrained algorithm is implemented to build a large consistent map. Finally, a validation of the solution proposed is presented and discussed using simulation and experimental data.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Robust cooperative visual localization with experimental validation for unmanned aerial vehicles


    Beteiligte:
    Nemra, Abdelkrim (Autor:in) / Aouf, Nabil (Autor:in)


    Erscheinungsdatum :

    01.12.2013


    Format / Umfang :

    19 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Relative Spherical-Visual Localization for Cooperative Unmanned Aerial Systems

    Holter, Steffen / Tsoukalas, Athanasios / Evangeliou, Nikolaos et al. | IEEE | 2021


    Autonomous target detection and localization using cooperative unmanned aerial vehicles

    Yoon, Youngrock / Gruber, Scott / Krakow, Lucas et al. | Tema Archiv | 2009


    Cooperative Localization of Unmanned Aerial Vehicles in Time-Invariant Formation

    Zhang, Jingze / Luo, Zijuan / Li, Chunyu et al. | Springer Verlag | 2024