This paper discusses the application of a back-propagation multi-layer perceptron and a learning vector quantization network to the classification of defects in valve stem seals for car engines.

    Both networks were trained with vectors containing descriptive attributes of known flaws. These attribute vectors (‘signatures’) were extracted from images of the seals captured by an industrial vision system. The paper describes the hardware and techniques used and the results obtained.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Neural Classifiers for Automated Visual Inspection


    Beteiligte:
    Pham, D T (Autor:in) / Bayro-Corrochano, E J (Autor:in)


    Erscheinungsdatum :

    01.04.1994


    Format / Umfang :

    7 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Neural classifiers for automated visual inspection

    Pham,D.T. / Byro-Corrochano,E.J. / Univ.of Wales,College of Cardiff,School of Electrical, Electronic and Systems Engng.,GB | Kraftfahrwesen | 1994


    Neural classifiers for automated visual inspection

    Pham, D.T. | Online Contents | 1994


    Automated Visual Inspection Technology

    Iwata, M. / Ejima, I. / Society of Automotive Engineers of Japan | British Library Conference Proceedings | 2003


    Automated visual inspection system

    JUNG SOON J | Europäisches Patentamt | 2015

    Freier Zugriff

    AUTOMATED VISUAL INSPECTION SYSTEM

    Europäisches Patentamt | 2018

    Freier Zugriff