Fuel and grid have different life-cycle carbon emission intensities, which makes plug-in hybrid electric vehicles (PHEVs) have great low-carbon potential. To reduce carbon emissions during PHEV driving, the energy allocation of PHEV based on carbon intensity is studied. The energy life cycle carbon emissions factors are collected and energy management strategies (EMS) are developed. A power-split PHEV model is established to analyze carbon dioxide (CO2) emissions. Carbon emissions factors calculate the carbon emissions of each power flow. Simulation research is carried out using Tianjin and Yunnan’s energy structure as an example. The equivalent CO2 emission minimum strategy (ECEMS) is established by optimizing the hybrid mode in the Rule-based strategy. Based on ECEMS, the improved particle swarm optimization (PSO) algorithm is used to optimize the rules of hybrid mode switching. As a comparison, the same method but a different goal is used to optimize energy consumption. The results show that the lowest energy consumption does not mean the lowest carbon emission. CO2 emissions in different scenarios are reduced by 7.1%–31.7%, but the energy consumption is increased.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comprehensive CO2 emissions analysis and optimization of plug-in hybrid electric vehicles


    Beteiligte:
    Chen, Daxin (Autor:in) / Chen, Tao (Autor:in) / Feng, Yifang (Autor:in)


    Erscheinungsdatum :

    01.06.2024




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Optimization of plug-in hybrid electric vehicles

    Pourabdollah, Mitra | TIBKAT | 2015


    Comprehensive well-to-wheel analysis for plug-in hybrid electric vehicles

    Kintner-Meyer,M. / Pratt,R. / Schneider,K. et al. | Kraftfahrwesen | 2008


    Optimization Model for Plug-In Hybrid Electric Vehicles

    A. A. Malikopoulos / D. E. Smith | NTIS | 2011


    Plug‐In Hybrid Electric Vehicles

    Mi, Chris / Masrur, M. Abul | Wiley | 2017


    Plug-in Hybrid Electric Vehicles

    Ehsani, Mehrdad | Springer Verlag | 2021