The existing modelling methods for multi-modal traffic network are generally based on traditional graph theory, and have high space complexity for the large number of virtual nodes and links. This article proposes a new modelling approach for bus network in multi-modal traffic network based on the hypergraph. In this study, the modelling of multimodal hypergraph is provided, and the traffic flow assignment model is focused. According to the characteristics of hyperedge list, the cost functions are redefined and used in the multi-modal traffic assignment. An experiment is taken to prove the effectiveness of the multi-modal hypergraph network. This study provides a meaningful supplement and promotion for the theory of transportation network modelling and assignment, and has a practical significance for the macro-simulation of multi-modal traffic network.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-modal traffic flow assignment in hypergraph network


    Beteiligte:
    Easa, Said (Herausgeber:in) / Wei, Wei (Herausgeber:in) / Zhong, Yiping (Autor:in) / Luo, Qingyu (Autor:in)

    Kongress:

    Eighth International Conference on Electromechanical Control Technology and Transportation (ICECTT 2023) ; 2023 ; Hangzhou, China


    Erschienen in:

    Proc. SPIE ; 12790


    Erscheinungsdatum :

    07.09.2023





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Multi-modal traffic flow assignment in hypergraph network

    Zhong, Yiping / Luo, Qingyu | British Library Conference Proceedings | 2023



    The multi-modal traffic assignment problem.

    Aashtiani, Hedayat Zokaei | DSpace@MIT | 1979

    Freier Zugriff

    Research on Elastic Demand Assignment of Multi-modal Urban Traffic Flow

    Chen, Yangyang / Yang, Juhua / Wang, Jianjun et al. | Springer Verlag | 2024


    Directed hypergraph attention network for traffic forecasting

    Xiaoyi Luo / Jiaheng Peng / Jun Liang | DOAJ | 2022

    Freier Zugriff