The probability hypothesis density (PHD) and cardinalized PHD (CPHD) filters were introduced in 2000 and 2006, respectively, as approximations of the full multitarget Bayes detection and tracking filter. Both filters are based on the "standard" multitarget measurement model that underlies most multitarget tracking theory. This paper is part of a series of theoretical studies that addresses PHD and CPHD filters for nonstandard multitarget measurement models. In this paper I derive the measurement-update equations for CPHD and PHD filters that estimate models of unknown, dynamically changing data, such as background clutter. A companion paper generalizes these results to multitarget detection and tracking in unknown, dynamic clutter.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    CPHD and PHD filters for unknown backgrounds I: dynamic data clustering


    Beteiligte:
    Mahler, Ronald (Autor:in)

    Kongress:

    Sensors and Systems for Space Applications III ; 2009 ; Orlando,Florida,United States


    Erschienen in:

    Proc. SPIE ; 7330 ; 73300K


    Erscheinungsdatum :

    29.04.2009





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Hybrid multi-Bernoulli and CPHD filters for superpositional sensors

    Nannuru, Santosh / Coates, Mark | IEEE | 2015


    Multisensor CPHD filter

    Nannuru, Santosh / Blouin, Stephane / Coates, Mark et al. | IEEE | 2016


    Adaptive Target Birth Intensity for PHD and CPHD Filters

    Ristic, B. / Clark, D. / Ba-Ngu Vo et al. | IEEE | 2012


    Track initialization for TOMHT using auxiliary CPHD filter

    Chen, Xin / Tharmarasa, R. / Kirubarajan, T. et al. | IEEE | 2012