Urban traffic vehicle detection is a key component of smart city transportation systems, aimed at improving traffic management and safety through modern technologies and information methods. In response to the characteristics and challenges of vehicle detection in smart cities, this paper proposes a vehicle detection method based on drone aerial images, employing an object detection algorithm based on YOLOv4, namely the Adaptive Cropping YOLO algorithm. Through training and optimization on a large-scale dataset, this method can accurately detect and identify different types of urban vehicles. Experimental results show that this algorithm can effectively detect large-sized image targets that traditional YOLO algorithms may miss, providing reliable technical support for traffic safety monitoring and management.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improved YOLO-based algorithm for urban traffic object detection


    Beteiligte:
    Falcone, Francisco (Herausgeber:in) / Yao, Xinwei (Herausgeber:in) / Zhang, Liguo (Autor:in) / Yan, Xu (Autor:in) / Jin, Mei (Autor:in)

    Kongress:

    4th International Conference on Internet of Things and Smart City (IoTSC 2024) ; 2024 ; Hangzhou, China


    Erschienen in:

    Proc. SPIE ; 13224


    Erscheinungsdatum :

    07.08.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Object detection for traffic management based on YOLO

    Hong, Xuebin / Huang, Jubin / Zhao, Weiwei et al. | SPIE | 2024


    Ship detection based on improved YOLO algorithm

    Zhang, Xiaoqing / Zhang, Zhiqiang | IEEE | 2023


    Yolo-Based Traffic Sign Recognition Algorithm

    Ming Li / Li Zhang / Linlin Li et al. | DOAJ | 2022

    Freier Zugriff


    Real Time Object Detection using YOLO Algorithm

    Haritha, I.V.Sai Lakshmi / Harshini, M. / Patil, Shruti et al. | IEEE | 2022