A compressive fusion of remote sensing images is presented based on the block compressed sensing (BCS) and non-subsampled contourlet transform (NSCT). Since the BCS requires small memory space and enables fast computation, firstly, the images with large amounts of data can be compressively sampled into block images with structured random matrix. Further, the compressive measurements are decomposed with NSCT and their coefficients are fused by a rule of linear weighting. And finally, the fused image is reconstructed by the gradient projection sparse reconstruction algorithm, together with consideration of blocking artifacts. The field test of remote sensing images fusion shows the validity of the proposed method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on compressive fusion for remote sensing images


    Beteiligte:
    Yang, Senlin (Autor:in) / Wan, Guobin (Autor:in) / Li, Yuanyuan (Autor:in) / Zhao, Xiaoxia (Autor:in) / Chong, Xin (Autor:in)

    Kongress:

    Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics: Optical Imaging, Remote Sensing, and Laser-Matter Interaction 2013 ; 2013 ; SuZhou,China


    Erschienen in:

    Erscheinungsdatum :

    21.02.2014





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Research on compressive fusion for remote sensing images [9142-86]

    Yang, S. / Wan, G. / Li, Y. et al. | British Library Conference Proceedings | 2014


    Fusion Of Remote Sensing Images via Lattice Filters

    Kaplan, N.H. / Erer, I. / Kent, S. | IEEE | 2007


    A Novel Fusion Strategy for Segmentation of Multisensor Remote Sensing Images

    Yang, Y. / Han, C. / Han, D. | British Library Online Contents | 2010



    Research on compressive fusion by multiwavelet transform

    Yang, Senlin / Wan, Guobin / Li, Yuanyuan et al. | SPIE | 2014