Road detection is the major task of autonomous vehicle guidance. We notice that feature lines, which are parallel to the road boundaries, are reliable cues for road detection in urban traffic. Therefore we present a real-time method that extracts the most likely road model using a set of feature-line-pairs (FLPs). Unlike the traditional methods that extract a single line, we extract the feature lines in pairs. Working with a linearly parameterized road model, FLP appears some geometrical consistency, which allows us to detect each of them with a Kalman filter tracking scheme. Since each FLP determines a road model, we apply regression diagnostics technique to robustly estimate the parameters of the whole road model from all FLPs. Another Kalman filter is used to track road model from frame to frame to provide a more precise and more robust detection result. Experimental results in urban traffic demonstrate real-time processing ability and high robustness.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vision-based real-time road detection in urban traffic


    Beteiligte:
    Lu, Jianye (Autor:in) / Yang, Ming (Autor:in) / Wang, Hong (Autor:in) / Zhang, Bo (Autor:in)

    Kongress:

    Real-Time Imaging VI ; 2002 ; San Jose,California,United States


    Erschienen in:

    Erscheinungsdatum :

    27.02.2002





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Neural-vision based approach for real-time road traffic applications

    Siyal, M.Y. / Fathy, M. / Dorry, F. | IET Digital Library Archive | 1997


    Neural-vision based approach for real-time road traffic applications

    Siyal, M.Y. / Fathy, M. / Dorry, F. | Tema Archiv | 1997


    Urban road management system based on real-time traffic

    CHEN MENG'EN / GAO ZHIHAO / MING HUICHUAN et al. | Europäisches Patentamt | 2025

    Freier Zugriff

    Vision-based real-time traffic accident detection

    Zu hui / Xie yaohua / Ma lu et al. | IEEE | 2014