We report on the development of new mobile robots for Mars exploration missions. These 'lightweight survivable rover (LSR)' systems are of potential interest to both space and terrestrial applications, and are distinguished from more conventional designs by their use of new composite materials, collapsible running gear, integrated thermal-structural chassis, and other mechanical features enabling improved mobility and environmental robustness at reduced mass, volume, and power. Our first demonstrated such rover architecture, LSR-1, introduces running gear based on 2D composite struts and 3D machined composite joints, a novel collapsible hybrid composite-aluminum wheel design, a unit-body structural- thermal chassis with improved internal temperature isolation and stabilization, and a spot-pushbroom laser/CCD sensor enabling accurate, fast hazard detection and terrain mapping. LSR-1 is an approximately .7 $MIL 1.0 meter(Lambda) 2(W X L) footprint six-wheel (20 cm dia.) rocker-bogie geometry vehicle of approximately 30 cm ground clearance, weighing only 7 kilograms with an onboard .3 kilogram multi-spectral imager and spectroscopic photometer. By comparison, NASA/JPL's recently flown Mars Pathfinder rover Sojourner is an 11+ kilogram flight experiment (carrying a 1 kg APXS instrument) having approximately .45 X .6 meter(Lambda) 2(WXL) footprint and 15 cm ground clearance, and about half the warm electronics enclosure (WEE) volume with twice the diurnal temperature swing (-40 to +40 degrees Celsius) of LSR- 1 in nominal Mars environments. We are also developing a new, smaller 5 kilogram class LSR-type vehicle for Mars sample return -- the travel to, localization of, pick-up, and transport back to an Earth return ascent vehicle of a sample cache collected by earlier science missions. This sample retrieval rover R&D prototype has a completely collapsible mobility system enabling rover stowage to approximately 25% operational volume, as well an actively articulated axle, allowing changeable pose of the wheel strut geometry for improved transverse and manipulation characteristics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Lightweight rovers for Mars science exploration and sample return


    Beteiligte:
    Schenker, Paul S. (Autor:in) / Sword, Lee F. (Autor:in) / Ganino, A. J. (Autor:in) / Bickler, Donald B. (Autor:in) / Hickey, Gregory S. (Autor:in) / Brown, D. K. (Autor:in) / Baumgartner, Eric T. (Autor:in) / Matthies, Larry H. (Autor:in) / Wilcox, Brian H. (Autor:in) / Balch, Tucker (Autor:in)

    Kongress:

    Intelligent Robots and Computer Vision XVI: Algorithms, Techniques, Active Vision, and Materials Handling ; 1997 ; Pittsburgh,PA,USA


    Erschienen in:

    Erscheinungsdatum :

    26.09.1997





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Lightweight Rovers for Mars Science Exploration and Sample Return

    Schenker, P. / Sword, L. / Ganino, A. et al. | NTRS | 1999


    Long-Range Rovers for Mars Exploration and Sample Return

    Parrish, J. C. / SAE | British Library Conference Proceedings | 2001


    Long-Range Rovers for Mars Exploration and Sample Return

    Parrish, Joe C. | SAE Technical Papers | 2001


    Mars Exploration Rovers

    San Martin, Alejandro Miguel | NTRS | 2005


    New Planetary Rovers for Long Range Mars Science and Sample Return

    Schenker, P. / Baumgartner, E. / Lindemann, R. et al. | NTRS | 1998