Avionics equipment is composed of multiple layers and complex structure, so it is difficult to research progress based on fault mechanism, and the amount of effective fault data of the model is insufficient, and it is difficult for the general fault diagnosis algorithm to train fault data. In order to realize the fault diagnosis of avionics equipment, machine learning is applied to the fault diagnosis of avionics equipment. Research samples are selected from ground operation simulation data, and an algorithm based on the combination of feature selection and extended isolation forest is proposed to detect and categorize typical faults of electronic modules. It can be well applied to the actual fault detection of avionics equipment . It can meet the requirements of lightweight applications and has practical engineering value.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Application of extended isolation forest in avionics equipment fault diagnosis


    Beteiligte:
    Yao, Xinwei (Herausgeber:in) / Kong, Xiangjie (Herausgeber:in) / Wu, Ziyu (Autor:in) / Niu, Wei (Autor:in) / Zhao, Yangyang (Autor:in) / Fan, Hong (Autor:in)

    Kongress:

    Fourth International Conference on Machine Learning and Computer Application (ICMLCA 2023) ; 2023 ; Hangzhou, China


    Erschienen in:

    Proc. SPIE ; 13176 ; 131763D


    Erscheinungsdatum :

    22.05.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    A Fault Diagnosis Method for Avionics Equipment Based on SMOTEWB-LGBM

    Gen Li / Wenhai Li / Tianzhu Wen et al. | DOAJ | 2024

    Freier Zugriff

    Aircraft avionics product fault diagnosis method and system based on avionics product problem library

    ZHOU RUI / JIANG JUEYI / ZHU QINGYU et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Key technology and research progress in avionics fault diagnosis

    Wu, Ziyu / Niu, Wei / Zhao, Yuhong et al. | SPIE | 2024


    Fault tolerant avionics

    HILLS, ANDY / MIRZA, NISAR | AIAA | 1988


    Avionics fault tree analyzer

    COOPER, L. | AIAA | 1983