In the paper, the simulation approach is proposed to analyze traffic flow characteristics under different mixed traffic scenarios. Firstly, the Intelligent Driver Model and Krauss models are chosen as the autonomous vehicle car-following model and manual vehicle one, and the models are described in detail. What’s more, the simulation of urban mobility (SUMO) software is applied to build three different types of highway scenarios, the two models are distinguished by setting different parameters. Finally, simulation program is run for each scenario, and the autonomous vehicles proportion increases gradually from 10% to 90% at the rate of 10%. The analysis results show that the average speed on the road increased as the proportion of autonomous vehicles increased, the conclusion proves that autonomous vehicles can improve road efficiency.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Mixed traffic flow characteristics analysis under different proportion of autonomous vehicles


    Beteiligte:
    Ghanizadeh, Ali Reza (Herausgeber:in) / Jia, Hongfei (Herausgeber:in) / Wang, Lin (Autor:in) / Guo, Yuqi (Autor:in) / Liu, Yanyue (Autor:in) / Zhu, Jierui (Autor:in)

    Kongress:

    Seventh International Conference on Traffic Engineering and Transportation System (ICTETS 2023) ; 2023 ; Dalian, China


    Erschienen in:

    Proc. SPIE ; 13064


    Erscheinungsdatum :

    20.02.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Characteristics of Heterogeneous Traffic Flow Involving Different Intelligent Level Autonomous Vehicles

    Wang, Xuan / Zeng, Junwei / Qian, Yongsheng et al. | Springer Verlag | 2025



    Risk Analysis of Autonomous Vehicles in Mixed Traffic Streams

    Bhavsar, Parth / Das, Plaban / Paugh, Matthew et al. | Transportation Research Record | 2017



    Research on Mixed Traffic Flow Model of Autonomous-Manual Driving Vehicles

    Ren, You / Wang, Liangzhe / Yan, Guan et al. | British Library Conference Proceedings | 2020