High track quality is the basis of ensuring the safe and comfortable operation of trains, and it is of great significance to accurately grasp the degradation law of track geometry to ensure track quality. Long Short-Term Memory (LSTM) network in machine learning has the function of remembering historical information, which can better predict the development trend of nonlinear time series, a prediction model of orbital geometric degradation based on LSTM is constructed by using historical data of track quality index (TQI). In order to verify the validity of the model, the test data of Lanzhou-Urumqi High-speed Railway Track Inspection Vehicle are selected. The results show that the prediction model of track geometric degradation based on LSTM established in this paper is effective and has high prediction accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction for geometric degradation of track on machine learning


    Beteiligte:
    Easa, Said (Herausgeber:in) / Wei, Wei (Herausgeber:in) / Hao, Junjie (Autor:in) / Liu, Rengkui (Autor:in)

    Kongress:

    Eighth International Conference on Electromechanical Control Technology and Transportation (ICECTT 2023) ; 2023 ; Hangzhou, China


    Erschienen in:

    Proc. SPIE ; 12790 ; 127903U


    Erscheinungsdatum :

    07.09.2023





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Prediction for geometric degradation of track on machine learning

    Hao, Junjie / Liu, Rengkui | British Library Conference Proceedings | 2023


    Railroad Track Geometric Degradation Analysis: A BNSF Case Study

    Rahimikelarijani, Behnam / Mohassel, Ahmad / Hamidi, Maryam | ASCE | 2019



    Fuzzy Approach in Rail Track Degradation Prediction

    Mostafa Karimpour / Lalith Hitihamillage / Najwa Elkhoury et al. | DOAJ | 2018

    Freier Zugriff

    AN INTEGRATED MODEL FOR TRACK DEGRADATION PREDICTION

    Zhang, Y.-J. / Murray, M. / Ferreira, L. et al. | British Library Conference Proceedings | 1999