Airport passenger flow forecast is the basis of revenue management for airlines. Accurate forecast model can help airlines develop more accurate sales strategies to reduce costs and maximize revenue. Since BP neural network model has the problems of slow convergence speed and easy to fall into local optimality when predicting passenger flow, improved particle swarm optimization algorithm is used to optimize BP neural network model and establish PSO-BP neural network prediction model. The passenger flow data of Beijing Capital Airport is used to carry out the experiment. The results show that compared with BP neural network, PSO-BP neural network can effectively improve the accuracy and stability of the forecast, and provide a new way of thinking for airport passenger flow


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Research on airport passenger flow forecast based on PSO-BP neural network


    Beteiligte:
    Mikusova, Miroslava (Herausgeber:in) / Wu, Shuai (Autor:in)

    Kongress:

    International Conference on Smart Transportation and City Engineering (STCE 2023) ; 2023 ; Chongqing, China


    Erschienen in:

    Proc. SPIE ; 13018


    Erscheinungsdatum :

    14.02.2024





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Forecast and Analysis of Passenger Flow of Airport Comprehensive Transportation Hub

    Lu, Xiaolong / Tang, Yuancheng / Sun, Zhiyun et al. | IEEE | 2024


    Passenger Flow Forecast of Urban Rail Transit Based on Wavelet Neural Network

    Xiao, Qiong / Ye, Jianbin / Yu, Mingjie et al. | Springer Verlag | 2024


    The Prediction Model Based on BP Neural Network about Airport Security-check Passenger Flow

    Zhong Xiang / Zhu Caiyun / Han Xu | DOAJ | 2019

    Freier Zugriff