Classical Floquet theory describes motion near a periodic orbit. But comparing Floquet theory to action angle methods shows which Jordan form is desirable. A new eigenvector algorithm is developed ensuring a canonical transform and handling the typical for the case of repeated eigenvalues, a chronic problem in conservative Hamiltonian systems. This solution also extends the Floquet decomposition to adjacent trajectories, and is fully canonical. This method yields the matrix of frequency partial derivatives, extending the solution’s validity. Some numerical examples are offered.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Canonical Floquet Theory II: Action-Angle Variables Near Conservative Periodic Orbits


    Weitere Titelangaben:

    J Astronaut Sci


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.06.2021


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Lyapunov-Floquet control of satellite relative motion in elliptic orbits

    Sherrill, Ryan E. / Sinclair, Andrew J. / Sinha, S. C. et al. | IEEE | 2015


    Periodic and Quasi-Periodic Orbits near Close Planetary Moons

    Baresi, Nicola / Dell’Elce, Lamberto | AIAA | 2023




    Locating Periodic Orbits by Topological Degree Theory

    Polymilis, C. / Servizi, G. / Skokos, C. et al. | British Library Conference Proceedings | 2003