Due to the complex working environment and lack of network management protocol, it is difficult to comprehensively monitor the operating states and diagnose the faults of the Multifunction Vehicle Bus (MVB). In this paper, an MVB fault diagnostic method based on physical waveform features and ensemble pruning has been proposed. Firstly, MVB waveforms of the bus administrator node (BA) in normal and fault conditions are sampled by an MVB analyzer based on high-speed A/D sampling technology. Network features are extracted from the waveforms, and a random forest (RF) classifier has been trained to classify different MVB faults. An ensemble pruning method based on diversity index and the k-mean algorithm has been proposed to reduce the number of decision trees and improve the ensemble performance. The experimental results show that the proposed feature extraction method and ensemble pruning classifier can recognize the MVB faults correctly, reduce the number of base classifiers, and improve the accuracy of the subforest compared with the original RF ensemble.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Fault Diagnosis of MVB Based on Random Forest and Ensemble Pruning


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Qin, Yong (Herausgeber:in) / Jia, Limin (Herausgeber:in) / Liu, Baoming (Herausgeber:in) / Liu, Zhigang (Herausgeber:in) / Diao, Lijun (Herausgeber:in) / An, Min (Herausgeber:in) / Li, Zhaozhao (Autor:in) / Wang, Lide (Autor:in) / Shen, Ping (Autor:in) / Song, Hui (Autor:in)

    Kongress:

    International Conference on Electrical and Information Technologies for Rail Transportation ; 2019 ; Qingdao, China October 25, 2019 - October 27, 2019



    Erscheinungsdatum :

    04.04.2020


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Fault Diagnosis of MVB Based on Random Forest and Ensemble Pruning

    Li, Zhaozhao / Wang, Lide / Shen, Ping et al. | British Library Conference Proceedings | 2020


    Fault Diagnosis of MVB Based on Random Forest and Ensemble Pruning

    Li, Zhaozhao / Wang, Lide / Shen, Ping et al. | TIBKAT | 2020



    Satellite attitude control system fault diagnosis and early warning method based on random forest

    ZHONG MAIYING / HUANG JIN / HE KAIXUN et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Aircraft environment control system air cooling equipment robust fault diagnosis method based on random forest

    TAO LAIFA / CHEN YU / ZHANG XINGLIU et al. | Europäisches Patentamt | 2020

    Freier Zugriff