Autonomous vehicles aim at higher levels of intelligence to recognize all the elements in the surrounding environment; in order to be able to make decisions efficiently and in real time. For this reason, a convolutional neural networks capable of perform semantic segmentation of these elements have been implemented. In this work it is proposed to use the ERFNet architecture to segment the main obstacles and lanes in a road environment. One of the requirements for training this type of networks is to have a complete and large dataset with these two types of labels. In order to avoid manual labeling, an automatic way of carrying out this process is proposed, using convolutional neural networks and different dataset already labeled. The generated dataset contains 19000 images tagged with obstacles and lanes, to be used to train a network of ERFnet architecture. From the experiment, the obtained results show the performance of the proposed approach providing accuracy of 74.42%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Joint Instance Segmentation of Obstacles and Lanes Using Convolutional Neural Networks


    Weitere Titelangaben:

    Advs in Intelligent Syst., Computing


    Beteiligte:
    Silva, Manuel F. (Herausgeber:in) / Luís Lima, José (Herausgeber:in) / Reis, Luís Paulo (Herausgeber:in) / Sanfeliu, Alberto (Herausgeber:in) / Tardioli, Danilo (Herausgeber:in) / Cabrera Lo Bianco, Leonardo (Autor:in) / Al-Kaff, Abdulla (Autor:in) / Beltrán, Jorge (Autor:in) / García Fernández, Fernando (Autor:in) / Fernández López, Gerardo (Autor:in)

    Kongress:

    Iberian Robotics conference ; 2019 ; Porto, Portugal November 20, 2019 - November 22, 2019



    Erscheinungsdatum :

    20.11.2019


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Joint Instance Segmentation of Obstacles and Lanes Using Convolutional Neural Networks

    Bianco, Leonardo Cabrera Lo / Al-Kaff, Abdulla / Beltrán, Jorge et al. | TIBKAT | 2020



    The detection of lanes and obstacles in real time using optimal moving window

    Choi, S.Y. / Lee, M. / Song, C.K. et al. | Tema Archiv | 2001


    CLARK: a heterogeneous sensor fusion method for finding lanes and obstacles

    Beauvais, M. / Lakshmanan, S. | British Library Online Contents | 2000


    Joint Semantic-Instance Segmentation Method for Intelligent Transportation System

    Li, Yujie / Cai, Jintong / Zhou, Quan et al. | IEEE | 2023