Recovering missing data to improve data quality is of great importance for prognostics and health management (PHM) of structures and machinery. Existing missing data reconstruction methods are generally limited by strong assumptions such as signal sparsity, coupled with heavy computational burdens, making them poorly adaptable to PHM data. To obtain more reliable PHM results, a novel algorithm is developed to handle missing data based on compressive sensing and enhanced context encoders (CS-ECE). The CS-ECE can reconstruct the detailed characteristics of signals in both the time and frequency domains. The effectiveness of the proposed method is validated using real-world data collected from a high-speed train. The results demonstrate that CS-ECE can obtain realistic and accurate recovered results, thereby providing a high-quality dataset for data-driven PHM studies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Sparsity-Free Compressed Sensing Method for PHM Data Quality Assurance Using Generative Adversarial Network


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Qin, Yong (Herausgeber:in) / Jia, Limin (Herausgeber:in) / Yang, Jianwei (Herausgeber:in) / Diao, Lijun (Herausgeber:in) / Yao, Dechen (Herausgeber:in) / An, Min (Herausgeber:in) / Xie, Qinglin (Autor:in) / Wang, Jing (Autor:in) / Tao, Gongquan (Autor:in) / Xie, Chenxi (Autor:in)

    Kongress:

    International Conference on Electrical and Information Technologies for Rail Transportation ; 2023 ; Beijing, China October 19, 2023 - October 21, 2023



    Erscheinungsdatum :

    03.02.2024


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic accident data quality enhancement method based on generative adversarial network

    ZHOU BEI / ZHANG SHENGRUI / ZHANG YING et al. | Europäisches Patentamt | 2023

    Freier Zugriff



    GENERATIVE ADVERSARIAL NETWORK ENRICHED DRIVING SIMULATION

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Generative adversarial network enriched driving simulation

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2022

    Freier Zugriff