Abstract This chapter is concerned with the construction of polynomial surrogates of complex configurations arising in computational fluid dynamics for the purpose of propagating uncertainties pertaining to geometrical and/or operational parameters. Generalized homogeneous chaos expansions are considered and different techniques for the non-intrusive reconstruction of the polynomial expansion coefficients are outlined. A sparsity-based reconstruction approach is more particularly emphasized since it benefits from the “sparsity-of-effects” trend commonly observed on global quantities of interest such as the aerodynamic coefficients of a profile. The overall framework is illustrated on a two-dimensional transonic turbulent flow around a RAE 2822 airfoil subjected to a variable free-stream Mach number, angle of attack, and relative thickness of the profile.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Generalized Polynomial Chaos for Non-intrusive Uncertainty Quantification in Computational Fluid Dynamics


    Beteiligte:


    Erscheinungsdatum :

    21.07.2018


    Format / Umfang :

    19 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch