This paper proposes the kernel orthogonal mutual subspace method (KOMSM) for 3D object recognition. KOMSM is a kernel-based method for classifying sets of patterns such as video frames or multi-view images. It classifies objects based on the canonical angles between the nonlinear subspaces, which are generated from the image patterns of each object class by kernel PCA. This methodology has been introduced in the kernel mutual subspace method (KMSM). However, KOMSM is different from KMSM in that nonlinear class subspaces are orthogonalized based on the framework proposed by Fukunaga and Koontz before calculating the canonical angles. This orthogonalization provides a powerful feature extraction method for improving the performance of KMSM. The validity of KOMSM is demonstrated through experiments using face images and images from a public database.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Kernel Orthogonal Mutual Subspace Method and Its Application to 3D Object Recognition


    Beteiligte:
    Yagi, Yasushi (Herausgeber:in) / Kang, Sing Bing (Herausgeber:in) / Kweon, In So (Herausgeber:in) / Zha, Hongbin (Herausgeber:in) / Fukui, Kazuhiro (Autor:in) / Yamaguchi, Osamu (Autor:in)

    Kongress:

    Asian Conference on Computer Vision ; 2007 ; Tokyo, Japan November 18, 2007 - November 22, 2007


    Erschienen in:

    Computer Vision – ACCV 2007 ; Kapitel : 46 ; 467-476


    Erscheinungsdatum :

    01.01.2007


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    A Framework for 3D Object Recognition Using the Kernel Constrained Mutual Subspace Method

    Fukui, K. / Stenger, B. / Yamaguchi, O. | British Library Conference Proceedings | 2006



    Hyperspectral Target Detection using Kernel Orthogonal Subspace Projection

    Kwon, H. / Nasrabadi, N. M. | British Library Conference Proceedings | 2005


    Kernel-Based Adaptive-Subspace Self-Organizing Map As A Nonlinear Subspace Pattern Recognition

    Kawano, H. / Yamakawa, T. / Horio, K. | British Library Conference Proceedings | 2004


    Coupled kernel-based subspace learning

    Shuicheng Yan, / Dong Xu, / Lei Zhang, et al. | IEEE | 2005