The shortest path problem is a very well-known optimization problem where the purpose is to find a path originating from the source node and terminating at vertex node in such a way that the sum of edge weights of constituent edges is minimum. This paper presents shortest path problem in an imprecise environment, edge weights being represented by Interval Type 2 Triangular fuzzy number. This paper introduces fuzzy preference ordering between any two Interval type 2 triangular fuzzy numbers and uses that to choose a path according to varying degrees of optimism and pessimism of decision maker. A numerical example has also been solved to present the effectiveness of the method presented and explains how the path changes as the degree of optimism and pessimism varies.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Solving Fuzzy Shortest Path Problem with Decision Maker’s Perspective


    Weitere Titelangaben:

    Lecture Notes in Civil Engineering


    Beteiligte:
    Laishram, Boeing (Herausgeber:in) / Tawalare, Abhay (Herausgeber:in) / Singh, Vishnu Pratap (Autor:in) / Sharma, Kirti (Autor:in) / Jain, Udit (Autor:in)

    Kongress:

    International Conference on Advances in Civil Engineering ; 2020 May 28, 2020 - May 29, 2020



    Erscheinungsdatum :

    15.12.2021


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch







    Solving partially observable stochastic shortest-path games

    Tomášek, Petr / Horák, Karel / Aradhye, Aditya et al. | BASE | 2021

    Freier Zugriff

    Robust Shortest Path Problem With Distributional Uncertainty

    Zhang, Yuli / Song, Shiji / Shen, Zuo-Jun Max et al. | IEEE | 2018