This study proposes an optimal stacking method with genetic algorithm (GA) based feature selection for multi-label classification problems. The most prevalent form of ensemble learning is stacking, which combines the results of multiple base classifiers to improve predictive performance. However, stacking requires careful selection of base classifiers and their hyperparameters, and feature selection. We proposed the use of a feature selection algorithm driven by genetic algorithms (GA) to pinpoint a subset of significant features. This subset is intended to enhance the working capability of the stacking model. The effectiveness of the model is assessed across various benchmark multi-label datasets. The performance results are showing that it outperforms several state-of-the-art multi-label classification methods. Additionally, we experiment to make the analysis of the performance of different hyperparameters and ensemble configurations on the impact of the proposed method. Overall, the proposed optimal stacking method with GA-based feature selection provides a promising solution for multi-label classification problems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Optimal Stacking Method with GA-Based Feature Selection for Multi-Label Classification


    Weitere Titelangaben:

    Smart Innovation, Systems and Technologies


    Beteiligte:
    Jha, Pradeep Kumar (Herausgeber:in) / Jamwal, Prashant (Herausgeber:in) / Tripathi, Brajesh (Herausgeber:in) / Garg, Deepak (Herausgeber:in) / Sharma, Harish (Herausgeber:in) / Hemavati (Autor:in) / Aparna, R (Autor:in)

    Kongress:

    Congress on Control, Robotics, and Mechatronics ; 2024 ; Warangal, India February 03, 2024 - February 04, 2024



    Erscheinungsdatum :

    14.11.2024


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch







    Multi-Label Classification with Generative Large Language Models

    Niraula, Nobal / Ayhan, Samet / Chidambaram, Balaguruna et al. | IEEE | 2024


    Multi-label convolutional neural network based pedestrian attribute classification

    Zhu, Jianqing / Liao, Shengcai / Lei, Zhen et al. | British Library Online Contents | 2017