Train dispatching of rail transit is an important issue for implementing the transportation plan and ensuring the orderly operation. Recognizing that existing centralized dispatch methods lack efficiency and flexibility, a novel concept of autonomous train dispatch of rail transit is proposed. Additionally, the Deep Reinforcement Learning (DRL) is incorporated into the autonomous train dispatch (ATD) model, and the resultant DRL-ATD model considers both dispatch and control objectives. The Double DQN (DDQN) algorithm is used for the model training, and a prioritized experience replay mechanism is further introduced to improve the stability and convergence. Using a case study involving the Chongqing Rail Transit in China, it is found that the DRL-ATD model can ensure the safety and punctuality of rail transit trains; it also reduces energy consumption by 1.62% during low passenger volume periods and passenger waiting time by 6.83% during high passenger volume periods, compared with the existing centralized method. Sensitivity analysis of the dispatch policy shows that the DRL-ATD model can effectively balance energy consumption of train operations and the total waiting time of passengers by adjusting the train operation schedules automatically, thereby providing the advantages of flexibility and dynamic adaptability for train operation.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Autonomous Train Dispatch Method for Regional Rail Transit Based on Deep Reinforcement Learning


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Wang, Wuhong (Herausgeber:in) / Chen, Yanyan (Herausgeber:in) / He, Zhengbing (Herausgeber:in) / Jiang, Xiaobei (Herausgeber:in) / Wei, Wei (Autor:in) / Liu, Ling (Autor:in) / Liu, Jun (Autor:in) / Zhang, Bo (Autor:in)


    Erscheinungsdatum :

    14.12.2021


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Autonomous Train Dispatch Method for Regional Rail Transit Based on Deep Reinforcement Learning

    Wei, Wei / Liu, Ling / Liu, Jun et al. | British Library Conference Proceedings | 2022




    Urban rail train energy control method based on deep reinforcement learning

    WANG QIONG / WANG XIAOKAN / CHEN JIAN et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Rail transit train bogie

    WANG WEI | Europäisches Patentamt | 2021

    Freier Zugriff