The demand for transportation continues to expand along with economic development, making traffic safety an important public policy issue. This study focuses on the analysis of traffic accident reports from Budapest to address the crucial issue of traffic safety. By employing machine learning models, including Random Forest, BP Neural Network, KNN Classifier, and RBF Neural Network, we aim to predict the severity of accidents. Performance evaluation metrics, such as accuracy, recall, F1 score, ROC AUC, and precision, are utilized to assess the effectiveness of each model. The findings highlight the diverse effectiveness levels of the models, offering valuable insights into the factors that contribute to accident severity. Moreover, the study emphasizes the potential of machine learning in enhancing road safety. Notably, our analysis demonstrates that the KNN algorithm outperforms other models in accurately classifying the severity of accidents, underscoring its significance in understanding and improving road safety.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Classification of Traffic Accident Severity Using Machine Learning Models


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Baranyi, Péter (Herausgeber:in) / Palkovics, László (Herausgeber:in) / Zöldy, Máté (Herausgeber:in) / Hamdan, Noura (Autor:in) / Sipos, Tibor (Autor:in)

    Kongress:

    IEEE International Conference on Cognitive Mobility ; 2023 ; Budapest, Hungary October 19, 2023 - October 20, 2023



    Erscheinungsdatum :

    28.04.2025


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Comparison of traffic accident injury severity prediction models with explainable machine learning

    Cicek, Elif / Akin, Murat / Uysal, Furkan et al. | Taylor & Francis Verlag | 2023


    Machine Learning Applications in Traffic Safety: Assessing Accident Severity Automatically

    Priyanka, S / Jayadharshini, P / Santhiya, S et al. | IEEE | 2023


    Automatic classification of traffic incident's severity using machine learning approaches

    Nguyen, Hoang / Cai, Chen / Chen, Fang | IET | 2017

    Freier Zugriff

    Automatic classification of traffic incident's severity using machine learning approaches

    Nguyen, Hoang / Cai, Chen / Chen, Fang | Wiley | 2017

    Freier Zugriff