Nach Aufstellung der Gleichungen wird zunächst ein einfacher Fall betrachtet, nämlich die Kreisfahrt auf einem bestimmten Radius ρ mit konstanter Fahrgeschwindigkeit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{v}$$\end{document}, d. h. die Fahrt mit konstanter Zentripetalbeschleunigung \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{v}^{2}/\rho$$\end{document}. (Dabei fällt nach Abschn. 20.1.1 der Krümmungsmittelpunkt der Bahnkurve mit dem Kreismittelpunkt und mit dem Momentanpol zusammen.) Dieser Fall der stationären Kreisfahrt ist auch ein genormter Testversuch, aus dem die Größe des Lenkradeinschlags, des Schwimmwinkels und dergleichen bestimmt werden.
In diesem Kapitel wird auf die Theorie der sog. stationären Kreisfahrt eingegangen. Sie wird mit Versuchsergebnissen verglichen, es werden Kenngrößen genannt, und sie wird durch Subjektivurteile bewertet.
Kreisfahrt bei konstanter Fahrgeschwindigkeit
Dynamik der Kraftfahrzeuge ; Kapitel : 21 ; 625-655
28.11.2014
31 pages
Aufsatz/Kapitel (Buch)
Elektronische Ressource
Deutsch
Kreisfahrt mit konstanter Fahrgeschwindigkeit
Springer Verlag | 2014
|Kreisfahrt mit konstanter Fahrgeschwindigkeit
Springer Verlag | 2014
|Erhoehung der Fahrgeschwindigkeit von Kuehlzuegen
Tema Archiv | 1975
|Verhalten von Kraftfahrzeugen bei Kreisfahrt im Grenzbereich
Tema Archiv | 1972
|