Detection, tracking, and re-identification (ReID) of objects in maritime environments in UAVs video stream presents significant challenges, particularly in search and rescue operations. In UAV based multi object tracking the ReID is hindered by the small object characteristics, sudden movements of the UAV’s gimbal and limited appearance diversity. To address this, we proposed a integrated method which includes detection and tracking of maritime object classes: boats, swimmers, and floaters—using the challenging SeaDronesSee dataset. Our approach leverages spatio-temporal features by re-engineering the YOLOv7 network with Video Swin Transformer model to capture 1) object-related spatial features and 2) to enhances detection by learning spatio-temporal dependencies. Central to our method is the Metadata-Assisted Re-ID (MARe-ID) for object tracking, which harnesses critical metadata from UAV, like GPS, UAV altitude, and camera orientations etc. to enhance tracking accuracy. Our experiments demonstrate the state-of-the-art performance of our method in maritime object detection, tracking and Re-ID, with significant improvements observed on the SeaDronesSee dataset.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing Maritime Multi Object Tracking with Meta-Data Assisted Re-identification


    Weitere Titelangaben:

    Communic.Comp.Inf.Science


    Beteiligte:
    Kakarla, Jagadeesh (Herausgeber:in) / Balasubramanian, R. (Herausgeber:in) / Murala, Subrahmanyam (Herausgeber:in) / Vipparthi, Santosh Kumar (Herausgeber:in) / Gupta, Deep (Herausgeber:in) / Sharma, Manan (Autor:in) / Nageli, Vinayak (Autor:in) / Goyal, Puneet (Autor:in) / Gorthi, Rama Krishna Sai S (Autor:in)

    Kongress:

    International Conference on Computer Vision and Image Processing ; 2024 ; Chennai, India December 20, 2024 - December 22, 2024



    Erscheinungsdatum :

    02.08.2025


    Format / Umfang :

    15 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    MARITIME OBJECT TRACKING MONITORING SYSTEM AND MARITIME OBJECT TRACKING MONITORING METHOD

    LEE HO JIN / HAN DAE YONG / HAN HYEON DEOK | Europäisches Patentamt | 2025

    Freier Zugriff

    Enhancing Maritime Safety with Deep Learning for Ship Identification

    Sripal, K. / Akshay, Kotra / Sai, Avula Shiva et al. | Springer Verlag | 2025




    Maritime Piracy and Long Range Identification and Tracking

    Popa, L.V. / WSEAS (Organization) | British Library Conference Proceedings | 2010