Near-field source localization is a potential research topic in next-generation wireless communications. Most existing methods focus on traditional subspace based methods or on-grid sparse methods. In this paper, we propose an off-grid sparse representation localization method. First, by obtaining a high order cumulant matrix we construct an angle based off-grid signal model and then employ the alternatively iterating optimization method to estimate the angles. For range estimation, a range based off-grid signal model is constructed by using the angle estimations and solved by alternatively iterating method. Simulation results reveal that, the proposed method not only enjoys high estimation accuracy, but also can realize auto-pairing of angles and ranges.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An Off-Grid Sparse Representation Based Localization Method for Near-Field Sources


    Weitere Titelangaben:

    Lect.Notes Social.Inform.


    Beteiligte:
    Wu, Qihui (Herausgeber:in) / Zhao, Kanglian (Herausgeber:in) / Ding, Xiaojin (Herausgeber:in) / Yang, Li (Autor:in) / Jin, Yi (Autor:in) / Xu, Changzhi (Autor:in) / Li, Xiaoran (Autor:in) / Zuo, Jinzhong (Autor:in) / Wang, Dizhu (Autor:in)

    Kongress:

    International Conference on Wireless and Satellite Systems ; 2020 ; Nanjing, China September 17, 2020 - September 18, 2020



    Erscheinungsdatum :

    28.02.2021


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Improved Sparse Symmetric Arrays Design for Mixed Near-Field and Far-Field Source Localization

    Yan, Hangqi / Wang, Yuexian / Gong, Yanyun et al. | IEEE | 2023



    Sparse Grid-Based Nonlinear Filtering

    Kalender, Carolyn / Schottl, Alfred | IEEE | 2013