In this paper, an end-to-end single image defogging algorithm is proposed which can achieve significant defogging effect under railway conditions. We present a method of fusing multi-scale feature information based on the residual network, which can extract more effective information at different scales. The method uses multi-scale convolution kernels to obtain different scale feature information, but it will increase computational cost and reduce the network depth. By increasing the bottleneck layer, we can deepen the residual network and ensure that the network can achieve better dehazing results. The proposed method can achieve better results than the state-of-the-art algorithms based on synthetic datasets and railway images.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Single Image Dehazing of Railway Images via Multi-scale Residual Networks


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Liu, Baoming (Herausgeber:in) / Jia, Limin (Herausgeber:in) / Qin, Yong (Herausgeber:in) / Liu, Zhigang (Herausgeber:in) / Diao, Lijun (Herausgeber:in) / An, Min (Herausgeber:in) / Cao, Zhi wei (Autor:in) / Qin, Yong (Autor:in) / Xie, Zheng yu (Autor:in)

    Kongress:

    International Conference on Electrical and Information Technologies for Rail Transportation ; 2019 ; Qingdao, China October 25, 2019 - October 27, 2019



    Erscheinungsdatum :

    02.04.2020


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Single Image Dehazing of Railway Images via Multi-scale Residual Networks

    Cao, Zhi wei / Qin, Yong / Xie, Zheng yu | British Library Conference Proceedings | 2020


    Single Image Dehazing of Railway Images via Multi-scale Residual Networks

    Cao, Zhi wei / Qin, Yong / Xie, Zheng yu | TIBKAT | 2020


    Single-Image Dehazing

    Tian, Jiandong | Springer Verlag | 2021


    Enhanced densely dehazing network for single image haze removal under railway scenes

    Ruhao Zhao / Xiaoping Ma / He Zhang et al. | DOAJ | 2021

    Freier Zugriff

    Image Dehazing Network Based on Multi-scale Feature Extraction

    Feng, Ting / Zhang, Fuquan / Yu, Zhaochai et al. | TIBKAT | 2022