Airlines focus on minimizing cost while ensuring on-time arrivals in their operations to avoid revenue loss. Especially network carriers with hub connections ensure that the incoming flights are on time for passenger, crew, and aircraft transfer by avoiding delays. Delay in time sums up billions of dollars in the aviation sector, predicting delay time helps in re-planning flight plans in a way to avoid delay. The existing deterministic models and real-time prediction system for delay time calculation lacks accuracy. The paper mainly focuses on using the airline arrival data and building a machine learning model (Random Forest Classifier) to predict delay time and probability. As random forest, in general, is robust, more flexible, and makes effective estimates this model will help in improving the overall performance of the system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Flight Delay Prediction Using Random Forest Classifier


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Kumar, Amit (Herausgeber:in) / Senatore, Sabrina (Herausgeber:in) / Gunjan, Vinit Kumar (Herausgeber:in) / Rahul, R. (Autor:in) / Kameshwari, S. (Autor:in) / Pradip Kumar, R. (Autor:in)

    Erschienen in:

    ICDSMLA 2020 ; Kapitel : 7 ; 67-72


    Erscheinungsdatum :

    09.11.2021


    Format / Umfang :

    6 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Flight Delay Prediction Using Random Forest with Enhanced Feature Engineering

    Afrane, Mary Dufie / Xu, Yao / Li, Lixin et al. | IEEE | 2025


    Research on Flight Delay Prediction Based on Random Forest

    Hu, Peng / Zhang, Jianping / Li, Ning | IEEE | 2021



    Traffic accident detection using random forest classifier

    Dogru, Nejdet / Subasi, Abdulhamit | IEEE | 2018


    Flight Delay Prediction Using Machine Learning Techniques

    Tijil, Yash / Dwivedi, Nripendra / Srivastava, Satyam Kumar et al. | IEEE | 2024