Autonomously tracking a dynamic unmanned ground vehicle (UGV) with an unmanned aerial vehicle (UAV) is challenging due to the difficulty for the UAV to track the UGV’s real-time state and adjust its policy accordingly. In this paper, we propose a deep reinforcement learning approach for a quadrotor UAV to track a moving UGV without knowing its motion dynamics. The proposed learning framework consists of two main systems: a Tracking Vision System (TVS) utilizing deep learning and a Tracking Control System (TCS) utilizing deep reinforcement learning. The TVS recognizes the UGV by analyzing images captured by the UAV, and then it provides the TCS with input data that is used to fulfill Markov Decision Process (MDP) in the TCS. The TCS generates optimal landing policies learned through simulated training. Moreover, we propose an Expert Knowledge Transfer (EKT) algorithm that allows human intervention in the UAV’s action space, which can speed up the training process. We demonstrate the effectiveness of the proposed method in simulation experiments.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Deep Reinforcement Learning-Based Approach for Autonomous Quadrotor Tracking Control


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Qu, Yi (Herausgeber:in) / Gu, Mancang (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Fu, Wenxing (Herausgeber:in) / Deng, Lan (Autor:in) / Wang, Jiaqing (Autor:in) / Jiang, Shuang (Autor:in) / Guo, Shuang (Autor:in) / Peng, Ao (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2023 ; Nanjing, China September 09, 2023 - September 11, 2023



    Erscheinungsdatum :

    23.04.2024


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Autonomous Quadrotor Landing using Deep Reinforcement Learning

    Polvara, Riccardo / Patacchiola, Massimiliano / Sharma, Sanjay et al. | ArXiv | 2017

    Freier Zugriff


    A Reinforcement Learning Approach for Autonomous Control and Landing of a Quadrotor

    Vankadari, Madhu Babu / Das, Kaushik / Shinde, Chinmay et al. | IEEE | 2018



    Attitude Control Based on Reinforcement Learning for Quadrotor

    Wang, Yao / Zhang, Weiping / Mou, Jiawang et al. | TIBKAT | 2022