Self-driving cars are the next milestone of the automation industry. To achieve the level of autonomy expected in a self-driving car, the vehicle needs to be mounted with an assortment of sensors that can help the vehicle to perceive its 3D environment better which leads to better decision making and control of the vehicle. To complement the advantages of different sensors, sensor fusion is done, to enhance the accuracy of the overall information. In real-time implementations, uncertainty in factors that affect the vehicle's motion can lead to overshoot in parameters. To avoid that, an estimation filter is used to predict and update the fused values. This paper focuses on sensor fusion of Lidar and Camera followed by estimation using Kalman filter. It can be seen how the use of an estimation filter can significantly improve the accuracy in tracking the path of an obstacle.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Sensor Fusion of Camera and Lidar Using Kalman Filter


    Weitere Titelangaben:

    Algorithms for Intelligent Systems


    Beteiligte:
    Sheth, Amit (Herausgeber:in) / Sinhal, Amit (Herausgeber:in) / Shrivastava, Abhinav (Herausgeber:in) / Pandey, Amit Kumar (Herausgeber:in) / Kunjumon, Reshma (Autor:in) / Sangeetha Gopan, G. S. (Autor:in)

    Erschienen in:

    Intelligent Systems ; Kapitel : 32 ; 327-343


    Erscheinungsdatum :

    22.07.2021


    Format / Umfang :

    17 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Implementation of Vision and Lidar Sensor Fusion Using Kalman Filter Algorithm

    Kunjumon, Reshma / Gopan G. S., Sangeetha | BASE | 2021

    Freier Zugriff

    Robust Camera Lidar Sensor Fusion Via Deep Gated Information Fusion Network

    Kim, Jaekyum / Choi, Jaehyung / Kim, Yechol et al. | IEEE | 2018


    Camera-LIDAR Integration: Probabilistic Sensor Fusion for Semantic Mapping

    Berrio, Julie Stephany / Shan, Mao / Worrall, Stewart et al. | IEEE | 2022


    Fuzzy state noise-driven Kalman filter for sensor fusion

    Chauhan, S / Patil, C / Sinha, M et al. | SAGE Publications | 2009


    A Comparison of Extended Kalman Filter, Sigma-Point Kalman Filter, and Particle Filter in GPS/INS Sensor Fusion

    Gross, J. / Gu, Y. / Gururajan, S. et al. | British Library Conference Proceedings | 2010