Vehicle platooning is a critical technology for transportation efficiency and energy consumption reduction. Even though conventional solutions to generate simultaneous lane-changing strategies have been widely studied, when managing platoons on freeways with mixed traffic, it becomes challenging to support sequential lane-changing maneuvers, which can perform efficient lane-changing even in high traffic density. To achieve that, this paper proposes an integrated approach called SmartPL, which can: 1) maintain close and efficient driving behaviors with stable platoon inter-vehicle distance during lane changes through a hybrid control model that separately manages car-following and lane-changing behaviors; 2) produce foresighted strategies by roadside unit (RSU) deploying a dedicated neural network, which comprises a traffic information encoder, a spatial relation extractor, and a strategy maker; and 3) facilitate sequential and safe lane-changing maneuvers by implementing a safety monitor on each platoon member. Furthermore, the efficiency and effectiveness of SmartPL are evaluated in a mixed-traffic freeway simulation. SmartPL achieves superior performance in accelerating and safeguarding lane-changing maneuvers, with average improvements of 12.54%, 14.66%, and 22.94% over three state-of-the-art methods, respectively. Code is available at https://github.com/IntelligentSystemsLab/SmartPL.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    SmartPL: An Integrated Approach for Platoons Driving on Mixed-Traffic Freeways


    Weitere Titelangaben:

    Communic.Comp.Inf.Science


    Beteiligte:
    Mahmud, Mufti (Herausgeber:in) / Doborjeh, Maryam (Herausgeber:in) / Wong, Kevin (Herausgeber:in) / Leung, Andrew Chi Sing (Herausgeber:in) / Doborjeh, Zohreh (Herausgeber:in) / Tanveer, M. (Herausgeber:in) / Li, Han (Autor:in) / You, Linlin (Autor:in) / Xie, Jieming (Autor:in) / Ye, Yun (Autor:in)

    Kongress:

    International Conference on Neural Information Processing ; 2024 ; Auckland, New Zealand December 02, 2024 - December 06, 2024



    Erscheinungsdatum :

    24.06.2025


    Format / Umfang :

    16 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    CoOP: V2V-based Cooperative Overtaking for Platoons on Freeways

    Strunz, Martin / Heinovski, Julian / Dressler, Falko | IEEE | 2021



    Traffic behavior on freeways

    Engineering Index Backfile | 1960


    Human Driving Centered Gain Scheduling Control of Mixed Platoons

    Orki, Omer / Borowsky, Avinoam / Arogeti, Shai | IEEE | 2023