Recent advancements in deep learning have provided powerful tools for intelligent vehicle tasks, particularly in the field of perception. However, achieving real-time performance with low power consumption remains a challenge included in the hot research topic known as green deep learning. In this paper, we present a comparative analysis of various YOLOv5 weights trained on the KITTI and SHIFT datasets using two platforms with different power consumption profiles: the NVIDIA Jetson AGX Xavier and a desktop computer equipped with a NVIDIA GTX 1080 Ti. Our analysis focuses on the average inference time and precision metrics for road objects detection, a key task for intelligent vehicles. Additionally, we apply TensorRT to optimize and accelerate the architecture on both platforms, resulting in significant speed improvements, particularly on the low-power Jetson AGX Xavier (30W). Our ultimate goal is to implement our whole autonomous driving architecture on several Jetson AGX Xaviers connected to a PC where the hyper-realistic CARLA simulator, is replicating the real-world autonomous vehicle environment. We obtain compelling validation results on KITTI and CARLA, achieving real-time performance on a lightweight Jetson AGX Xavier with a powerful object detector such as YOLOv5m.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Green Deep Learning: Comparative Study of Road Object Detectors Between Jetson Boards and PC


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Marques, Lino (Herausgeber:in) / Santos, Cristina (Herausgeber:in) / Lima, José Luís (Herausgeber:in) / Tardioli, Danilo (Herausgeber:in) / Ferre, Manuel (Herausgeber:in) / Sánchez-García, Fabio (Autor:in) / Arango, Felipe (Autor:in) / Gómez-Huélamo, Carlos (Autor:in) / Ocaña, Manuel (Autor:in) / Revenga, Pedro (Autor:in)

    Kongress:

    Iberian Robotics conference ; 2023 ; Coimbra, Portugal November 22, 2023 - November 24, 2023



    Erscheinungsdatum :

    27.04.2024


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Real Time Object Detection of Aerial Images Using Deep Learning on Jetson Nano

    Wadhwa, Shruti / Saini, Poonam / Kumar, Rakesh et al. | AIAA | 2025


    The Asphalt Jungle - Private Jetson

    Antoine, Arthur St | Online Contents | 2009


    Comparative Study of Computer Vision Based Line Followers Using Raspberry Pi and Jetson Nano

    Dewantoro, Gunawan / Mansuri, Jamil / Setiaji, Fransiscus Dalu | BASE | 2021

    Freier Zugriff