Abstract This paper describes a full probabilistic solution to the Simultaneous Localisation and Mapping (SLAM) problem. Previously, the SLAM problem could only be solved in real time through the use of the Kalman Filter. This generally restricts the application of SLAM methods to domains with straight-forward (analytic) environment and sensor models. In this paper the Sum-of-Gaussian (SOG) method is used to approximate more general (arbitrary) probability distributions. This representation permits the generalizations made possible by particle filter or Monte-Carlo methods, while inheriting the real-time computational advantages of the Kalman filter. The method is demonstrated by its application to sub-sea field data consisting of both sonar and visual observation of near-field landmarks.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Bayesian Algorithm for Simultaneous Localisation and Map Building


    Beteiligte:


    Erscheinungsdatum :

    01.01.2003


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Bayesian Object Localisation in Images

    Sullivan, J. / Blake, A. / Isard, M. et al. | British Library Online Contents | 2001


    An experimental and theoretical investigation into simultaneous localisation and map building

    Dissanayake, M. W. M. G. / Newman, P. / Durrant-Whyte, H. F. et al. | Springer Verlag | 2008


    Bayesian Optimisation for Safe Navigation Under Localisation Uncertainty

    Oliveira, Rafael / Ott, Lionel / Guizilini, Vitor et al. | British Library Conference Proceedings | 2017


    Towards multi-vehicle simultaneous localisation and mapping

    Williams, S.B. / Dissanayake, G. / Durrant-Whyte, H. | Tema Archiv | 2002