With the development of urban rail transportation, more and more passengers choose metro to travel. Predicting the short-time passenger flow at stations is the basis of metro operation scheduling. In this paper, by analyzing the characteristics of passenger flow, we use K-means clustering algorithm to classify the weekday passenger flow into three categories according to the similarity of time-varying characteristics. Then, using the first four intervals of the prediction time and the historical contemporaneous passenger flow as input, a Long-Short Term Memory neural network (LSTM) and a least squares support vector machine (LSSVM) model are used to predict each class of passenger flow respectively. The model with the best prediction results under each cluster is selected for the combination, and it is finally found that the combined model has better prediction results than the individual model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Short-Time Prediction of Subway Inbound Passenger Flow Based on K-means Clustering Combination Model


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Zhang, Zhenyuan (Herausgeber:in) / Zhang, Wenjie (Autor:in) / Gong, Lei (Autor:in) / Zhao, Tong (Autor:in) / Luo, Qin (Autor:in) / Yao, Chongfu (Autor:in) / Wang, Yu (Autor:in)

    Kongress:

    International Conference on Intelligent Transportation Engineering ; 2021 ; Beijing, China October 29, 2021 - October 31, 2021



    Erscheinungsdatum :

    01.06.2022


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Short-Time Prediction of Subway Inbound Passenger Flow Based on K-means Clustering Combination Model

    Zhang, Wenjie / Gong, Lei / Zhao, Tong et al. | British Library Conference Proceedings | 2022


    Short-Term Subway Inbound Passenger Flow Prediction Based on AFC Data and PSO-LSTM Optimized Model

    Liu, Jiaxin / Jiang, Rui / Zhu, Dan et al. | Springer Verlag | 2022

    Freier Zugriff

    Short-Term Interval Prediction of Inbound Passenger Flow of Subway Station under Failure Events

    Yichao Pu / Xiangdong Xu / Qianqi Fan et al. | DOAJ | 2024

    Freier Zugriff