Tires must be visually inspected to guarantee vehicle safety due to the sharp rise in the number of persons utilizing transport vehicles. This domain of study is important for maintaining traffic safety, lowering accident rates, and avoiding tire failure related to financial losses. Several technologies have previously been put forth to offer quick tire fault identification. Therefore, this study aims to improve damaged tire detection using multiple CNN-based models by identifying the best one by comparing their various performance measures. The performance of these models: YOLOv9, ResNet50, VGG-19, MobileNet, and Hybrid are compared to find out the best for this multi-data classification. The results of this research, indicate that the Hybrid model outperforms the vision transformer and other models with an accuracy of 89%, F1 score of 0.89, Precision of 0.89, Recall of 0.89, and AUC of 0.95. Explainable AI techniques like CAM, LIME, and Convolutional Neural Networks (CNNs) offer interpretable insights into tire defects, increasing the efficiency and accuracy of defective tire identification. A dataset of 1856 is used to train these algorithms including 828 photos of good tires and 1028 images of damaged tires.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Explainable Deep Learning Approaches to Defective Tire Detection


    Weitere Titelangaben:

    Inf. Syst. Eng. Manag.


    Beteiligte:
    Ragavendiran, S. D. Prabu (Herausgeber:in) / Pavaloaia, Vasile Daniel (Herausgeber:in) / Mekala, M. S. (Herausgeber:in) / Cabezuelo, Antonio Sarasa (Herausgeber:in) / Nanteza, Miriam (Autor:in) / Kilo, Nabwire Babra (Autor:in) / Jjingo, Daudi (Autor:in) / Marvin, Ggaliwango (Autor:in)

    Kongress:

    International Conference on Innovations and Advances in Cognitive Systems ; 2024 ; Kangeyam, India May 26, 2024 - May 27, 2024



    Erscheinungsdatum :

    04.09.2024


    Format / Umfang :

    16 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Classification of Impact Echo Signals Using Explainable Deep Learning and Transfer Learning Approaches

    Torlapati, Rahul / Azari, Hoda / Shokouhi, Parisa | Transportation Research Record | 2023


    A Driver Detection Method by Means of Explainable Deep Learning

    Martinelli, Fabio / Mercaldo, Francesco / Santone, Antonella | IEEE | 2023




    Explainable Machine Learning

    Garcke, Jochen / Roscher, Ribana | DataCite | 2023