Abstract The study presents the combined application of Fuzzy Inference System (FIS) and Muskingum model in flood routing. The rules of FIS are incorporated with the Muskingum formula and the model is called the Muskingum FIS model in the study. The proposed model estimates the outflow by applying a Network-based Fuzzy Inference System (ANFIS), which is a FIS implemented in the adaptive network framework. Simulation results indicate that the proposed scheme is an advisable approach for the flood routing. Case study is presented to demonstrate that the FIS is an alternative in application of the Muskingum model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Muskingum flood routing model using a neuro-fuzzy approach


    Beteiligte:
    Chu, Hone-Jay (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    14.07.2009


    Format / Umfang :

    6 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    An Analysis of MLR and NLP for Use in River Flood Routing and Comparison with the Muskingum Method

    Zare, Mohammad / Koch, Manfred | HENRY – Bundesanstalt für Wasserbau (BAW) | 2014

    Freier Zugriff

    Muskingum electric railroad

    Fisher, H.A. / Ross, B.A. | Engineering Index Backfile | 1968


    Green vehicle routing in urban zones – A neuro-fuzzy approach

    Jovanovic, Aleksandar D. / Pamucar, Dragan S. / Pejcic-Tarle, Snezana | Tema Archiv | 2014


    New nonlinear variable-parameter Muskingum models

    Niazkar, Majid / Afzali, Seied Hosein | Online Contents | 2017


    New nonlinear variable-parameter Muskingum models

    Niazkar, Majid / Afzali, Seied Hosein | Springer Verlag | 2017