Zusammenfassung The market potential of safety critical products using AI is very attractive and Deep Learning Neural Networks (NN) have proven strengths to provide important functionality. This paper describes some of the challenges in arguing safety of systems using Deep Learning NN, especially functional improvement in context of SOTIF (Safety of the Intended Functionality) or other approaches to provide the safety case. An architecture and independence controller is proposed which can be used beneficially to reduce residual risk of functional insufficiencies for Deep Learning NN based systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Architecture and independence controller for deep learning in safety critical applications


    Beteiligte:


    Erscheinungsdatum :

    01.01.2019


    Format / Umfang :

    12 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Deutsch





    Monoprocessed computer architecture for safety critical applications

    de Almeida, J. R. / Fonseca, J. A. | British Library Conference Proceedings | 2002


    DACAPO: A Distributed Computer Architecture for Safety-Critical Control Applications

    Rostamzadeh, B. / Lonn, H. / Snedsbol, R. et al. | British Library Conference Proceedings | 1995


    Architecture Level Safety Analyses for Safety-Critical Systems

    K. S. Kushal / Manju Nanda / J. Jayanthi | DOAJ | 2017

    Freier Zugriff

    Experimental Allocation of Safety-Critical Applications on Reconfigurable Multi-Core Architecture

    Sutter, Louis / Khamvilai, Thanakorn / Monmousseau, Philippe et al. | IEEE | 2018