Recent years have witnessed a revolutionary transformation in the transportation industry owing to the remarkable advancements of autonomous vehicles (AVs). It is anticipated that future traffic flow will be structured as a hybrid composition of AVs and human-driven vehicles (HVs). This research investigates the implications of diverse distributions of AVs on spatial scaling, within the context of the morning commute problem. Specifically, the study incorporates the influence of AV capacity expansion and evaluates the equilibrium cost of different spatial distributions. Our study suggests that when the proportion of AVs has a linear impact on the road capacity, mixing autonomous vehicles with conventional vehicles on the road can minimize the total cost of the system. The conclusion presents potential benefits of incorporating AVs into the current transportation system and provides a reference point for efficiently managing AVs to alleviate traffic congestion during peak hours.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Impact of Autonomous Vehicles in Morning Commute Problem


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Jia, Limin (Herausgeber:in) / Easa, Said (Herausgeber:in) / Qin, Yong (Herausgeber:in) / Pang, Aitong (Autor:in) / Jiang, Gege (Autor:in)

    Kongress:

    International Conference on SmartRail, Traffic and Transportation Engineering ; 2023 ; Changsha, China July 28, 2023 - July 30, 2023



    Erscheinungsdatum :

    14.08.2024


    Format / Umfang :

    6 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Parking design and pricing for regular and autonomous vehicles: a morning commute problem

    Nourinejad, Mehdi / Amirgholy, Mahyar | Taylor & Francis Verlag | 2022


    Modeling Morning Commute Problem with Real-Time Ridesharing Services

    Mo, Dong / Zheng, Sijing / Chen, Xiqun (Michael) | ASCE | 2021


    Modeling Morning Commute Problem with Real-Time Ridesharing Services

    Mo, Dong / Zheng, Sijing / Chen, Xiqun Michael | TIBKAT | 2021


    Managing morning commute traffic with parking

    Qian, Zhen (Sean) | Online Contents | 2012


    A Pareto Improving Strategy for the Time-Dependent Morning Commute Problem

    Daganzo, C. F. / Garcia, R. C. | British Library Online Contents | 2000