Abstract Connected vehicle analytics has a promise to substantially advance vehicle prognostics and health management. However, the practical implementation of connected vehicle prognostics faces a number of challenges, such as the limitation of communication bandwidth resulting in potential loss of data that is critical for adequate prognostics models. The paper discusses a modelling framework for connected vehicle prognostics for dynamic systems that allows addressing connectivity limitations and memory constraints. The framework is based on a hybrid prognostics approach combining in-vehicle physics-based data aggregation model and cloud-based data-driven prognostics leveraging cross-vehicle and external data sources. The application of the framework is illustrated by models for brake pads wear and cabin air filter prognostics.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Connected Vehicle Prognostics Framework for Dynamic Systems


    Beteiligte:
    Makke, Omar (Autor:in) / Gusikhin, Oleg (Autor:in)


    Erscheinungsdatum :

    07.12.2018


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Connected Vehicle Data – Prognostics and Monetization Opportunity

    Zhu, Di / Dadam, Sumanth Reddy / Kumar, Vivek | SAE Technical Papers | 2023


    Vehicle Prognostics

    Sraj,J.A. / US Army Tank-Automot.Command,US | Kraftfahrwesen | 1981


    Prognostics framework software design tool

    Li Pi Su, / Nolan, M. / deMare, G. et al. | IEEE | 2000


    Prognostics Framework Software Design Tool

    Su, L. P. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2000


    Air Vehicle Prognostics & Health Management

    Ferrell, B. L. / Institute of Electrical and Electronics Engineers | British Library Conference Proceedings | 2000