This research addresses the packet delivery in vehicular communication systems using various reinforcement learning algorithms. The improvement process is executed using Q-learning, SARSA, DQN, and DDQN algorithms. The comparative analysis of algorithmic efficiency aims to identify the most effective reinforcement learning approach for enhancing communication reliability in vehicular networks, contributing to the advancement of intelligent transportation systems. The objectives of the research are to design and develop a simulation environment for VANETs and evaluate the performance of the various reinforcement learning models in improving network performance. The goals of the research are to demonstrate the effectiveness of reinforcement learning in improving network performance in VANETs, compare the performance of various reinforcement learning models in improving network performance, and provide a framework for developing more advanced algorithms for VANETs in the future. By designing a simulation environment tailored for VANETs, we evaluated different reinforcement learning models and found that they notably increase the packet delivery ratio (PDR), thus improving network performance and facilitating the successful delivery of a greater number of packets.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Reinventing Urban Mobility with Reinforcement Learning in Vehicular Ad-Hoc Networks


    Weitere Titelangaben:

    Lect. Notes in Networks, Syst.


    Beteiligte:
    Bansal, Jagdish Chand (Herausgeber:in) / Borah, Samarjeet (Herausgeber:in) / Hussain, Shahid (Herausgeber:in) / Salhi, Said (Herausgeber:in) / Anand, Aayush (Autor:in) / Anne, Pranav (Autor:in) / Sanjay, Rohan (Autor:in) / Annappa, Bhuvan (Autor:in) / Priya, L. Kamatchi (Autor:in)

    Kongress:

    International Conference on Computing and Machine Learning ; 2024 ; Rangpo, India March 29, 2024 - March 30, 2024



    Erscheinungsdatum :

    24.01.2025


    Format / Umfang :

    13 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Reinventing the automobile : personal urban mobility for the 21st century

    Mitchell, William J. ;Borroni-Bird, Chris ;Burns, Lawrence D. | SLUB | 2015


    Reinventing the automobile : personal urban mobility for the 21st century

    Mitchell, William J. / Borroni-Bird, Chris | TIBKAT | 2010



    Preserving Location-Privacy in Vehicular Networks via Reinforcement Learning

    Berri, Sara / Zhang, Jun / Bensaou, Brahim et al. | IEEE | 2022


    Traffic Navigation for Urban Air Mobility with Reinforcement Learning

    Lee, Jaeho / Lee, Hohyeong / Noh, Junyoung et al. | Springer Verlag | 2022