For some HEVs, depending on the system configuration, the integration degree of vehicle control strategies, and modeling methods, both discrete and continuous actions can exist in the same action space, making it difficult to describe them monolithically by either discrete action space or continuous action space. Taking a power-split hybrid electric bus (HEB) as an example, this chapter will introduce how to address EMS learning problems in such hybrid action spaces by combing the idea of action value learning and policy gradient update. Furthermore, an energy management method considering terrain information is described, and accordingly, the influence of the multi-source information on learning-based EMSs is discussed in terms of fuel economy, strategy performance under specific driving scenarios, and the strategy decisions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Learning of EMSs in Discrete-Continuous Hybrid Action Space


    Beteiligte:
    Li, Yuecheng (Autor:in) / He, Hongwen (Autor:in)


    Erscheinungsdatum :

    01.01.2022


    Format / Umfang :

    23 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch