Forklifts, commonly used in modern factories for transporting goods, are often driven with agility, which can lead to safety hazards. In this study, we present a real-time, on-board monitoring system based on edge computing and deep learning to assist forklift operators for more safe driving. Serving as the forklift's peripheral vision, a wide-angle imaging module with three cameras is designed to detect pedestrians and designated object (e.g. traffic cone, oil drum, truck, bicycle, etc.) around the vehicle. This system actively identifies pedestrians and objects around the forklift's path to warn the operator and enhance safety. Additionally, a wide-angle camera is also installed in front of the operator to monitor the driver’s driving behavior. The system processes images at a speed of over 20 frames per second, making it suitable for real-time pedestrian detection and collision avoidance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Forklift Collision Avoidance System Based on AI and Edge Computing


    Weitere Titelangaben:

    Communic.Comp.Inf.Science


    Beteiligte:
    Hui, Lin (Herausgeber:in) / Hsu, Ching-Hsien (Herausgeber:in) / Ruengittinun, Somchoke (Herausgeber:in) / Huang, Ya-Yung (Autor:in) / Wu, Hsien-Huang (Autor:in)

    Kongress:

    International Symposium on Pervasive Systems, Algorithms and Networks ; 2025 ; Bangkok, Thailand January 19, 2025 - January 23, 2025
    International Conference on Ubi-Media Computing ; 2025 ; Bangkok, Thailand
    January 19, 2025 - January 23, 2025



    Erscheinungsdatum :

    20.07.2025


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Forklift active collision avoidance control system and method

    NING XIAOBIN / HONG YIHAO / WANG ZHENGHAO et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Deep Learning-Based Monocular Depth Estimation Method for Forklift Collision Avoidance

    Kim, Dong-Ju / Lee, Chang-Yeop / Kim, Hyo-Jin et al. | Springer Verlag | 2025


    Traffic Collision Avoidance with Vehicular Edge Computing

    Hasarinda, Ravishka / Tharuminda, Theekshana / Palitharathna, Kapila et al. | IEEE | 2023


    Vehicle and pedestrian collision avoidance method based on edge computing

    FENG YONG / LI YUTONG | Europäisches Patentamt | 2020

    Freier Zugriff

    Forklift reversing anti-collision system

    YU JIANJUN / JIANG BO / ZHANG HUAJUN et al. | Europäisches Patentamt | 2021

    Freier Zugriff