The proliferation of small uncrewed aerial systems (UAS) poses many threats to airspace systems and critical infrastructures. In this paper, we apply deep reinforcement learning (DRL) to intercept rogue UAS in urban airspaces. We train a group of homogeneous friendly UAS, in this paper referred to as agents, to pursue and intercept a faster UAS evading capture while navigating through crowded airspace with several moving non-cooperating interacting entities (NCIEs). The problem is formulated as a multi-agent Markov Decision Process, and we develop the Proximal Policy Optimization based Advantage Actor-Critic (PPO-A2C) method to solve it, where the actor and critic networks are trained in a centralized server and the derived actor network is distributed to the agents to generate the optimal action based their observations. The simulation results show that, as compared to the traditional method, PPO-A2C fosters collaborations among agents to achieve the highest probability of capturing the evader and maintain the collision rate with other agents and NCIEs in the environment.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multi-agent Deep Reinforcement Learning for Countering Uncrewed Aerial Systems


    Weitere Titelangaben:

    Springer Proceedings in Advanced Robotics


    Beteiligte:
    Bourgeois, Julien (Herausgeber:in) / Paik, Jamie (Herausgeber:in) / Piranda, Benoît (Herausgeber:in) / Werfel, Justin (Herausgeber:in) / Hauert, Sabine (Herausgeber:in) / Pierson, Alyssa (Herausgeber:in) / Hamann, Heiko (Herausgeber:in) / Lam, Tin Lun (Herausgeber:in) / Matsuno, Fumitoshi (Herausgeber:in) / Mehr, Negar (Herausgeber:in)

    Kongress:

    International Symposium on Distributed Autonomous Robotic Systems ; 2022 ; Montbéliard, France November 28, 2022 - November 30, 2022



    Erscheinungsdatum :

    01.02.2024


    Format / Umfang :

    14 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    UNCREWED AERIAL FREIGHTER SYSTEM

    VAN MERKENSTEIJN JAN | Europäisches Patentamt | 2020

    Freier Zugriff

    ERGONOMIC UNCREWED AERIAL VEHICLE

    TURNER STEVEN / GOODSON JOHN / MORONITI DAVID | Europäisches Patentamt | 2024

    Freier Zugriff

    ERGONOMIC UNCREWED AERIAL VEHICLE

    TURNER STEVEN / GOODSON JOHN / MORONITI DAVID | Europäisches Patentamt | 2024

    Freier Zugriff

    UNCREWED AERIAL FREIGHTER(TM) SYSTEM

    VAN MERKENSTEIJN IV JAN HENRI | Europäisches Patentamt | 2019

    Freier Zugriff

    UNCREWED AERIAL SYSTEM SERVICE SUPPLIER UNCREWED AERIAL VEHICLE AUTHORIZATION AND AUTHENTICATION EVENT SUBSCRIPTION

    ATARIUS ROOZBEH / BASKARAN SHEEBA BACKIA MARY / KARAMPATSIS DIMITRIOS | Europäisches Patentamt | 2023

    Freier Zugriff