A design method based on deep reinforcement learning is proposed for the problem of designing a model tracking control law with anti-disturbance capability. Firstly, the basic control structure based on the model tracking method is determined. Then an open source high fidelity arithmetic aircraft dynamics model is selected to carry out the control law design through simulation. The intelligent body model is built by deep deterministic policy gradient algorithm (DDPG), and the state quantity, control quantity and reward are set according to the target model tracking control problem, and the intelligent body is trained. The trained intelligent body is simulated and tested to verify its model tracking control capability with high anti-disturbance capability. By comparing with the control effect of traditional PID algorithm under perturbation, it is further demonstrated that the intelligent body trained based on deep deterministic policy gradient algorithm for flight control can achieve the model tracking control target with good anti-disturbance capability at the same time.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Design of Model Tracking Control Law Based on DDPG Algorithm


    Weitere Titelangaben:

    Lect. Notes Electrical Eng.


    Beteiligte:
    Qu, Yi (Herausgeber:in) / Gu, Mancang (Herausgeber:in) / Niu, Yifeng (Herausgeber:in) / Fu, Wenxing (Herausgeber:in) / Yu, Yimeng (Autor:in) / Hu, Yahui (Autor:in)

    Kongress:

    International Conference on Autonomous Unmanned Systems ; 2023 ; Nanjing, China September 09, 2023 - September 11, 2023



    Erscheinungsdatum :

    23.04.2024


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Longitudinal Tracking Control of Vehicle Platooning Using DDPG-based PID

    Yang, Junru / Liu, Xingliang / Liu, Shidong et al. | IEEE | 2020


    Intelligent Ship Decision System Based on DDPG Algorithm

    Cui, Zhewen / Guan, Wei / Luo, Wenzhe | IEEE | 2022


    Autopilot Strategy Based on Improved DDPG Algorithm

    Zuo, Xiaochao / Li, Xiaoning / Tian, Zhewen | SAE Technical Papers | 2019


    Improvement of the DDPG algorithm via twin delayed DDPG (TD3) on vertical rocket landing control system

    Maz, Faisal Amir / Prajitno, Prawito / Andiarti, Rika et al. | American Institute of Physics | 2023


    Vehicle speed tracking in bench test based on DDPG

    Feng, Shengsong / Hang, Ying / Wang, Jian et al. | IEEE | 2022