Brain-computer interface (BCI) technology enables the direct transmission of human control intentions to external devices, allowing direct control of external devices through the human brain. However, the current implementation of BCIs is limited by the low accuracy of electroencephalogram (EEG) classification. In this study, we applied Gaussian distribution model as a preprocessing tool to screen and filter EEG training data samples, aiming to improve the classification accuracy of motor imagery tasks. Firstly, the Gaussian distribution model was established through small sample pre-training. Subsequently, a probability threshold was determined based on the two types of Gaussian model distributions corresponding to the imagery of the left and right hands. This threshold was used to screen and filter subsequent training samples. Our results demonstrated that this proposed method effectively enhanced the accuracy of motor imagery task classification, and significant improvements were observed in public datasets. This study emphasizes the importance of data screening in ensuring the quality and reliability of training data, thereby presenting promising opportunities for the practical implementation of BCI technology.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Improving Motor Imagery Brain-Computer Interface Performance Through Data Screening


    Weitere Titelangaben:

    Lect.Notes Computer


    Beteiligte:
    Yang, Huayong (Herausgeber:in) / Liu, Honghai (Herausgeber:in) / Zou, Jun (Herausgeber:in) / Yin, Zhouping (Herausgeber:in) / Liu, Lianqing (Herausgeber:in) / Yang, Geng (Herausgeber:in) / Ouyang, Xiaoping (Herausgeber:in) / Wang, Zhiyong (Herausgeber:in) / Zheng, Shiwei (Autor:in) / Jiang, Lizi (Autor:in)

    Kongress:

    International Conference on Intelligent Robotics and Applications ; 2023 ; Hangzhou, China July 05, 2023 - July 07, 2023



    Erscheinungsdatum :

    21.10.2023


    Format / Umfang :

    11 pages




    Medientyp :

    Aufsatz/Kapitel (Buch)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Improving Motor Imagery Brain-Computer Interface Performance Through Data Screening

    Zheng, Shiwei / Jiang, Lizi / Mai, Xun et al. | TIBKAT | 2023


    Kinesthetic Motor Imagery Based Brain-Computer Interface for Power Wheelchair Manoeuvring

    T., Jackie / M.P., Paulraj / Adom, A.H. et al. | BASE | 2018

    Freier Zugriff

    Partial Directed Coherence for the Classification of Motor Imagery-Based Brain-Computer Interface

    Awais, Muhammad Ahsan / Yusoff, Mohd Zuki | Springer Verlag | 2022

    Freier Zugriff

    Brain Computer Interface

    Vanshi Sharma | BASE | 2020

    Freier Zugriff